Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Disaster Med Public Health Prep ; 17: e550, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044835

RESUMEN

OBJECTIVE: Evidence of myelosuppression has been negatively correlated with patient outcomes following cases of high dose sulfur mustard (SM) exposure. These hematologic complications can negatively impact overall immune function and increase the risk of infection and life-threatening septicemia. Currently, there are no approved medical treatments for the myelosuppressive effects of SM exposure. METHODS: Leveraging a recently developed rodent model of SM-induced hematologic toxicity, post-exposure efficacy testing of the granulocyte colony-stimulating factor drug Neupogen® was performed in rats intravenously challenged with SM. Before efficacy testing, pharmacokinetic/pharmacodynamic analyses were performed in naïve rats to identify the apparent human equivalent dose of Neupogen® for efficacy evaluation. RESULTS: When administered 1 d after SM-exposure, daily subcutaneous Neupogen® treatment did not prevent the delayed onset of hematologic toxicity but significantly accelerated recovery from neutropenia. Compared with SM controls, Neupogen®-treated animals recovered body weight faster, resolved toxic clinical signs more rapidly, and did not display transient febrility at time points generally concurrent with marked pancytopenia. CONCLUSIONS: Collectively, this work corroborates the results of a previous pilot large animal study, validates the utility of a rodent screening model, and provides further evidence for the potential clinical utility of Neupogen® as an adjunct treatment following SM exposure.


Asunto(s)
Gas Mostaza , Humanos , Ratas , Animales , Filgrastim/farmacología , Filgrastim/uso terapéutico , Gas Mostaza/toxicidad , Neutrófilos , Roedores , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico
2.
Int J Radiat Biol ; 96(1): 155-166, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216213

RESUMEN

Purpose: Evaluation of the pharmacodynamics (PD) and pharmacokinetics (PK) of romiplostim alone and in combination with pegfilgrastim in a non-human primate (NHP) model of acute radiation syndrome (ARS).Materials and methods: Male and female rhesus macaques were subjected to Cobalt-60 γ irradiation, at a dose of 550 cGy 24 h prior to subcutaneous administration of either romiplostim alone as a single (2.5 or 5.0 mg/kg on Day 1) or repeat dose (5.0 mg/kg on Days 1 and 8), pegfilgrastim alone as a repeat dose (0.3 µg/kg on Day 1 and 8), or a combination of both agents (romiplostim 5.0 mg/kg on Day 1; pegfilgrastim 0.3 µg/kg on Days 1 and 8). Clinical outcome, hematological parameters and PK were assessed throughout the 45 d study period post-irradiation.Results: Administration of romiplostim, pegfilgrastim or the combination of both resulted in significant improvements in hematological parameters, notably prevention of severe thrombocytopenia, compared with irradiated, vehicle control-treated NHPs. The largest hematologic benefit was observed when romiplostim and pegfilgrastim were administered as a combination therapy with much greater effects on both platelet and neutrophil recovery following irradiation compared to single agents alone.Conclusions: These results indicate that romiplostim alone or in combination with pegfilgrastim is effective at improving hematological parameters in an NHP model of ARS. This study supports further study of romiplostim as a medical countermeasure to improve primary hemostasis and survival in ARS.


Asunto(s)
Filgrastim/farmacología , Neutropenia/tratamiento farmacológico , Polietilenglicoles/farmacología , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Trombocitopenia/tratamiento farmacológico , Trombopoyetina/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/efectos de la radiación , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Macaca mulatta , Masculino , Neutropenia/sangre , Neutropenia/metabolismo , Traumatismos Experimentales por Radiación/sangre , Traumatismos Experimentales por Radiación/metabolismo , Receptores Fc/uso terapéutico , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/uso terapéutico , Trombocitopenia/sangre , Trombocitopenia/metabolismo , Trombopoyetina/farmacocinética , Trombopoyetina/uso terapéutico , Factores de Tiempo
3.
Eur J Med Chem ; 154: 367-391, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29860061

RESUMEN

We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.


Asunto(s)
Fármacos Anti-VIH/farmacología , Biología Computacional , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , VIH/efectos de los fármacos , Pirroles/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Relación Dosis-Respuesta a Droga , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad
4.
Sci Transl Med ; 7(296): 296ra111, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26180101

RESUMEN

Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.


Asunto(s)
Antimaláricos/química , Inhibidores Enzimáticos/química , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirimidinas/química , Triazoles/química , Administración Oral , Animales , Antimaláricos/farmacocinética , Área Bajo la Curva , Células CACO-2 , Cristalografía por Rayos X , Dihidroorotato Deshidrogenasa , Perros , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacocinética , Haplorrinos , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos NOD , Ratones SCID , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Plasmodium falciparum , Pirimidinas/farmacocinética , Conejos , Especificidad por Sustrato , Triazoles/farmacocinética
5.
J Pharm Sci ; 104(5): 1832-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25727482

RESUMEN

The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 min, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) is unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of coadministered drugs metabolized by these enzymes. Plasma protein-binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bidirectional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Quelantes/química , Quelantes/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Piridonas/química , Piridonas/metabolismo , Animales , Células CACO-2 , Perros , Estabilidad de Medicamentos , Femenino , Humanos , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Ratas
6.
Int J Toxicol ; 33(4): 282-287, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24819520

RESUMEN

N1-Benzylated dihydroquinolin-6-ols and their corresponding esters display exceptional activity against African trypanosomes in vitro, and administration of members of this class of compounds to trypanosome-infected mice results in cures in a first-stage African trypanosomiasis model. Since a quinone imine intermediate has been implicated in the antiparasitic mechanism of action of these compounds, evaluation of the hepatotoxic, mutagenic, and methemoglobin-promoting effects of these agents was performed. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate showed outstanding in vitro selectivity for Trypanosoma brucei compared to the HepG2, Hep3B, Huh7, and PLC5 hepatocyte cell lines. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-(2-methoxybenzyl)-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate were not mutagenic when screened in the Ames assay, with or without metabolic activation. The latter 2 compounds promoted time- and dose-dependent formation of methemoglobin when incubated in whole human blood, but such levels were below those typically required to produce symptoms of methemoglobinemia in humans. Although compounds capable of quinone imine formation require careful evaluation, these in vitro studies indicate that antitrypanosomal dihydroquinolines merit further study as drug candidates against the neglected tropical disease human African trypanosomiasis.


Asunto(s)
Acetatos/efectos adversos , Drogas en Investigación/efectos adversos , Hepatocitos/efectos de los fármacos , Metahemoglobina/metabolismo , Quinolinas/efectos adversos , Compuestos de Quinolinio/efectos adversos , Tripanocidas/efectos adversos , Acetatos/metabolismo , Acetatos/farmacología , Activación Metabólica , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Drogas en Investigación/síntesis química , Drogas en Investigación/metabolismo , Drogas en Investigación/farmacología , Hemoglobinas/química , Hemoglobinas/metabolismo , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Cinética , Metahemoglobina/química , Pruebas de Mutagenicidad , Oxidación-Reducción , Quinolinas/síntesis química , Quinolinas/metabolismo , Quinolinas/farmacología , Compuestos de Quinolinio/metabolismo , Compuestos de Quinolinio/farmacología , Ratas , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo
7.
PLoS One ; 8(4): e60579, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23577127

RESUMEN

BACKGROUND: The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. METHODOLOGY/PRINCIPAL FINDINGS: A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. CONCLUSIONS/SIGNIFICANCE: The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.


Asunto(s)
Antibacterianos/farmacología , Antivirales/farmacología , Armas Biológicas , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , United States Food and Drug Administration , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Estados Unidos
8.
J Med Chem ; 55(13): 6087-93, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22708838

RESUMEN

Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacocinética , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Propafenona/análogos & derivados , Administración Oral , Animales , Antimaláricos/administración & dosificación , Cloroquina/farmacología , Citocromo P-450 CYP2D6/metabolismo , Inhibidores del Citocromo P-450 CYP2D6 , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Femenino , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos ICR , Microsomas Hepáticos/metabolismo , Parasitemia/tratamiento farmacológico , Relación Estructura-Actividad
9.
J Med Chem ; 55(13): 6047-60, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22691154

RESUMEN

Compounds bactericidal against both replicating and nonreplicating Mtb may shorten the length of TB treatment regimens by eliminating infections more rapidly. Screening of a panel of antimicrobial and anticancer drug classes that are bioreduced into cytotoxic species revealed that 1,2,4-benzotriazine di-N-oxides (BTOs) are potently bactericidal against replicating and nonreplicating Mtb. Medicinal chemistry optimization, guided by semiempirical molecular orbital calculations, identified a new lead compound (20q) from this series with an MIC of 0.31 µg/mL against H37Rv and a cytotoxicity (CC(50)) against Vero cells of 25 µg/mL. 20q also had equivalent potency against a panel of single-drug resistant strains of Mtb and remarkably selective activity for Mtb over a panel of other pathogenic bacterial strains. 20q was also negative in a L5178Y MOLY assay, indicating low potential for genetic toxicity. These data along with measurements of the physiochemical properties and pharmacokinetic profile demonstrate that BTOs have the potential to be developed into a new class of antitubercular drugs.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Triazinas/química , Triazinas/farmacología , Animales , Antituberculosos/síntesis química , Chlorocebus aethiops , Descubrimiento de Drogas , Femenino , Isomerismo , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitrofuranos/química , Nitrofuranos/farmacología , Nitroimidazoles/química , Nitroimidazoles/farmacología , Óxidos/química , Óxidos/farmacología , Quinoxalinas/química , Quinoxalinas/farmacología , Ratas , Tirapazamina , Triazinas/síntesis química , Tuberculosis/tratamiento farmacológico , Células Vero
10.
Chirality ; 24(10): 796-803, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22744891

RESUMEN

The presystemic sulfate conjugation of the stereoisomers of 4'-methoxyfenoterol, (R,R')-MF, (S,S')-MF, (R,S')-MF, and (S,R')-MF, was investigated using commercially available human intestinal S9 fractions, a mixture of sulfotransferase (SULT) enzymes. The results indicate that the sulfation was stereospecific and that an S-configuration at the ß-OH carbon of the MF molecule enhanced the maximal formation rates with (S,R')-MF (S,S')-MF (R,S')-MF ≈ (R,R')-MF, and competition studies demonstrated that (S,R')-MF is an effective inhibitor of (R,R')-MF sulfation (IC(50) = 60 µM). In addition, the results from a cDNA-expressed human SULT isoform screen indicated that SULT1A1, SULT1A3, and SULT1E1 can mediate the sulfation of all four MF stereoisomers. Previously published molecular models of SULT1A3 and SULT1A1 were used in docking simulations of the MF stereoisomers using Molegro Virtual Docker. The models of the MF-SULT1A3 and MF-SULT1A1 complexes indicate that each of the two chiral centers of MF molecule plays a role in the observed relative stabilities. The observed stereoselectivity is the result of multiple hydrogen bonding interactions and induced conformational changes within the substrate-enzyme complex. In conclusion, the results suggest that a formulation developed from a mixture of (R,R')-MF and (S,R')-MF may increase the oral bioavailability of (R,R')-MF.


Asunto(s)
Fenoterol/análogos & derivados , Sulfatos/química , Sulfotransferasas/metabolismo , Sitios de Unión , Simulación por Computador , Fenoterol/química , Humanos , Modelos Moleculares , Isoformas de Proteínas/metabolismo , Estereoisomerismo , Sulfotransferasas/genética
11.
J Med Chem ; 55(9): 4205-19, 2012 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-22435599

RESUMEN

Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization.


Asunto(s)
Antimaláricos/administración & dosificación , Antimaláricos/química , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/aislamiento & purificación , Quinolinas/administración & dosificación , Quinolinas/química , Administración Oral , Animales , Antimaláricos/síntesis química , Antimaláricos/farmacocinética , Disponibilidad Biológica , Femenino , Células Hep G2 , Humanos , Malaria Falciparum/parasitología , Ratones , Ratones Endogámicos ICR , Resonancia Magnética Nuclear Biomolecular , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Quinolinas/síntesis química , Quinolinas/farmacocinética , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
12.
Talanta ; 82(5): 1892-904, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20875593

RESUMEN

A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in complex regional pain syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)- and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric metabolites hydroxynorketamine, (2S,6S)-/(2R,6R)-HNK and two hydroxyketamines, (2S,6S)-HKet and (2S,6R)-Hket. In this method, (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK and the diastereomeric hydroxyl-metabolites were separated and quantified using a C(18) stationary phase and the relative enantiomeric concentrations of (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK were determined using an AGP-CSP. The analysis of the results of microsomal incubations of (R)- and (S)-Ket and a plasma and urine sample from a CRPS patient indicated the presence of 10 additional compounds and glucuronides. The data from the analysis of the patient sample also demonstrated that a series of HNK metabolites were the primary metabolites in plasma and (R)- and (S)-DHNK were the major metabolites found in urine. The results suggest that norKet is the initial, but not the primary metabolite and that downstream norKet metabolites play a role in (R,S)-Ket-related pain relief in CRPS patients.


Asunto(s)
Analgésicos/sangre , Analgésicos/orina , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Ketamina/sangre , Ketamina/orina , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/uso terapéutico , Biotransformación , Calibración , Cromatografía Liquida/métodos , Síndromes de Dolor Regional Complejo/sangre , Síndromes de Dolor Regional Complejo/metabolismo , Síndromes de Dolor Regional Complejo/orina , Glucurónidos/sangre , Glucurónidos/metabolismo , Glucurónidos/orina , Humanos , Infusiones Intravenosas , Ketamina/química , Ketamina/farmacocinética , Ketamina/uso terapéutico , Estándares de Referencia , Reproducibilidad de los Resultados , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos
13.
J Med Chem ; 53(9): 3685-95, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20361799

RESUMEN

Among the known antimalarial drugs, chloroquine (CQ) and other 4-aminoquinolines have shown high potency and good bioavailability. Yet complications associated with drug resistance necessitate the discovery of effective new antimalarial agents. ADMET prediction studies were employed to evaluate a library of new molecules based on the 4-aminoquinolone-related structure of CQ. Extensive in vitro screening and in vivo pharmacokinetic studies in mice helped to identify two lead molecules, 18 and 4, with promising in vitro therapeutic efficacy, improved ADMET properties, low risk for drug-drug interactions, and desirable pharmacokinetic profiles. Both 18 and 4 are highly potent antimalarial compounds, with IC(50) values of 5.6 and 17.3 nM, respectively, against the W2 (CQ-resistant) strain of Plasmodium falciparum (for CQ, IC(50) = 382 nM). When tested in mice, these compounds were found to have biological half-lives and plasma exposure values similar to or higher than those of CQ; they are therefore desirable candidates to pursue in future clinical trials.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/química , Aminoquinolinas/uso terapéutico , Animales , Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos , Semivida , Ratones , Farmacocinética , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Toxicología
14.
Drug Metab Dispos ; 36(1): 129-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17954528

RESUMEN

The purpose of this study was to investigate the sulfation of resveratrol (3,5,4'-trihydroxystilbene) and its potential to exhibit drug-drug interactions via sulfation. The possible interaction of resveratrol with 17beta-estradiol (E2), a major estrogen hormone and prototypic substrate for sulfate conjugation, was studied. Resveratrol and E2 are both known to undergo sulfate conjugation catalyzed by human sulfotransferases (SULTs). Resveratrol is a phytoestrogen with mixed estrogen agonist/antagonist properties that is being developed as a chemopreventive agent. The sulfate conjugation of E2 and resveratrol were studied individually using S9 fractions from human liver and jejunum as well as recombinant human SULT isoforms. The sulfation of E2 (3-20 nM) was then investigated in the presence of various concentrations (0, 0.5, 1, and 2 microM) of resveratrol using the two S9 preparations as well as recombinant SULT1E1, the major isoform responsible for E2 sulfation. Resveratrol inhibited E2 sulfation with estimated K(i) values of 1.1 microM (liver), 0.6 microM (jejunum), and 2.3 microM (SULT1E1), concentrations that could be pharmacologically relevant. The results suggest that these phytoestrogens can potentially alter the homeostasis of estrogen levels. These findings also imply that resveratrol may inhibit the metabolism of other estrogen analogs or therapeutic agents such as ethinylestradiol or dietary components that are also substrates for SULT1E1.


Asunto(s)
Estradiol/metabolismo , Yeyuno/metabolismo , Hígado/metabolismo , Microsomas/metabolismo , Fitoestrógenos/farmacología , Estilbenos/farmacología , Sulfotransferasas/metabolismo , Arilsulfotransferasa/metabolismo , Femenino , Humanos , Yeyuno/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Microsomas/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Proteínas Recombinantes/metabolismo , Resveratrol , Sulfatos/metabolismo
15.
Gastrointest Endosc ; 65(6): 842-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17466203

RESUMEN

BACKGROUND: Capsule endoscopy performed via the traditional peroral route is technically challenging in patients with dysphagia, gastroparesis, and/or abnormal upper-GI (UGI) anatomy. OBJECTIVE: To describe the indications and outcomes of cases in which the AdvanCE capsule endoscope delivery device, which has recently been cleared by the Food and Drug Administration, was used. DESIGN: Retrospective, descriptive, case series. SETTING: Tertiary care, university hospital. PATIENTS: We report a case series of 16 consecutive patients in whom the AdvanCE delivery device was used. The study period was May 2005 through July 2006. INTERVENTIONS: Endoscopic delivery of the video capsule to the proximal small bowel by using the AdvanCE delivery device. MAIN OUTCOME MEASUREMENTS: Indications, technique, and completeness of small bowel imaging in patients who underwent endoscopic video capsule delivery. RESULTS: The AdvanCE delivery device was used in 16 patients ranging in age from 3 to 74 years. The primary indications for endoscopic delivery included inability to swallow the capsule (10), altered UGI anatomy (4), and gastroparesis (2). Of the 4 patients with altered UGI anatomy, 3 had dual intestinal loop anatomy (ie, Bilroth-II procedure, Whipple surgery, Roux-en-Y gastric bypass) and 1 had a failed Nissen fundoplication. In all cases, the capsule was easily deployed without complication, and complete small intestinal imaging was achieved. LIMITATIONS: Small patient size. CONCLUSIONS: Endoscopic placement of the Given PillCam by use of the AdvanCE delivery device was safe and easily performed in patients for whom capsule endoscopy would otherwise have been contraindicated or technically challenging.


Asunto(s)
Endoscopios en Cápsulas , Trastornos de Deglución/diagnóstico , Trastornos de Deglución/terapia , Endoscopios Gastrointestinales , Endoscopía Gastrointestinal/métodos , Neoplasias Intestinales/diagnóstico , Intestino Delgado/patología , Adolescente , Adulto , Anciano , Niño , Preescolar , Diseño de Equipo , Seguridad de Equipos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Grabación en Video
16.
J Am Chem Soc ; 128(47): 15188-99, 2006 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-17117870

RESUMEN

Aflatoxin B1 (AFB) epoxide forms an unstable N7 guanine adduct in DNA. The adduct undergoes base-catalyzed ring opening to give a highly persistent formamidopyrimidine (FAPY) adduct which exists as a mixture of forms. Acid hydrolysis of the FAPY adduct gives the FAPY base which exists in two separable but interconvertible forms that have been assigned by various workers as functional, positional, or conformational isomers. Recently, this structural question became important when one of the two major FAPY species in DNA was found to be potently mutagenic and the other a block to replication [Smela, M. E.; Hamm, M. L.; Henderson, P. T.; Harris, C. M.; Harris, T. M.; Essigmann, J. M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6655-6660]. NMR studies carried out on the AFB-FAPY bases and deoxynucleoside 3',5'-dibutyrates now establish that the separable FAPY bases and nucleosides are diastereomeric N5 formyl derivatives involving axial asymmetry around the congested pyrimidine C5-N5 bond. Anomerization of the protected beta-deoxyriboside was not observed, but in the absence of acyl protection, both anomerization and furanosyl --> pyranosyl ring expansion occurred. In oligodeoxynucleotides, two equilibrating FAPY species, separable by HPLC, are assigned as anomers. The form normally present in duplex DNA is the mutagenic species. It has previously been assigned as the beta anomer by NMR (Mao, H.; Deng, Z. W.; Wang, F.; Harris, T. M.; Stone, M. P. Biochemistry 1998, 37, 4374-4387). In single-stranded environments the dominant species is the beta anomer; it is a block to replication.


Asunto(s)
Aflatoxina B1/química , Aductos de ADN/química , Daño del ADN , Replicación del ADN , Pirimidinas/química , Aflatoxina B1/metabolismo , Aductos de ADN/metabolismo , Isomerismo , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Pirimidinas/metabolismo
17.
J Pharm Pharmacol ; 58(4): 469-79, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16597364

RESUMEN

Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.


Asunto(s)
Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Estilbenos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Humanos , Insectos , Isoenzimas/metabolismo , Resveratrol , Estilbenos/química , UDP Glucuronosiltransferasa 1A9
18.
J Clin Oncol ; 22(8): 1382-8, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15007088

RESUMEN

PURPOSE: Severe toxicity is commonly observed in cancer patients receiving irinotecan. UDP-glucuronosyltransferase 1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38. This study prospectively evaluated the association between the prevalence of severe toxicity and UGT1A1 genetic variation. PATIENTS AND METHODS: Sixty-six cancer patients with advanced disease refractory to other treatments received irinotecan 350 mg/m(2) every 3 weeks. Toxicity and pharmacokinetic data were measured during cycle 1. UGT1A1 variants (-3279G>T, -3156G>A, promoter TA indel, 211G>A, 686C>A) were genotyped. RESULTS: The prevalence of grade 4 neutropenia was 9.5%. Grade 4 neutropenia was much more common in patients with the TA indel 7/7 genotype (3 of 6 patients; 50%) compared with 6/7 (3 of 24 patients; 12.5%) and 6/6 (0 of 29 patients; 0%) (P =.001). The TA indel genotype was significantly associated with the absolute neutrophil count nadir (7/7 < 6/7 < 6/6, P =.02). The relative risk of grade 4 neutropenia was 9.3 (95% CI, 2.4 to 36.4) for the 7/7 patients versus the rest of the patients. Pretreatment total bilirubin levels (mean +/- standard deviation) were significantly higher in patients with grade 4 neutropenia (0.83 +/- 0.08 mg/dL) compared to those without grade 4 neutropenia (0.47 +/- 0.03 mg/dL; P <.001). The -3156G>A variant seemed to distinguish different phenotypes of total bilirubin within the TA indel genotypes. The -3156 genotype and the SN-38 area under the concentration versus time curve were significant predictors of ln(absolute neutrophil count nadir; r(2) = 0.51). CONCLUSION: UGT1A1 genotype and total bilirubin levels are strongly associated with severe neutropenia, and could be used to identify cancer patients predisposed to the severe toxicity of irinotecan. The hypothesis that the -3156G>A variant is a better predictor of UGT1A1 status than the previously reported TA indel requires further testing.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Camptotecina/análogos & derivados , Camptotecina/efectos adversos , Glucuronosiltransferasa/genética , Neutropenia/inducido químicamente , Inhibidores de Topoisomerasa I , Bilirrubina/metabolismo , Femenino , Variación Genética , Genotipo , Humanos , Irinotecán , Masculino , Estudios Prospectivos , Riesgo
19.
Toxicol Sci ; 73(1): 36-43, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12657745

RESUMEN

Estragole (4-allyl-1-methoxybenzene) is a naturally occurring food flavoring agent found in basil, fennel, bay leaves, and other spices. Estragole and its metabolite, 1'-hydroxyestragole (1'-HE), are hepatocarcinogens in rodent models. Recent studies from our laboratory have shown that glucuronidation of 1'-HE is a major detoxification pathway for estragole and 1'-HE, accounting for as much as 30% of urinary metabolites of estragole in rodents. Therefore, this study was designed to investigate the glucuronidation of 1'-HE in human liver microsomes in vitro and identify the specific uridine diphosphate glucuronosyltransferase (UGT) isoforms responsible for 1'-HE glucuronidation. The formation of the glucuronide of 1'-HE (1'-HEG) followed atypical kinetics, and the data best fit to a Hill equation, resulting in apparent kinetic parameters of Km = 1.45 mM, Vmax = 164.5 pmoles/min/mg protein, and n = 1.4. There was a significant intersubject variation in 1'-HE glucuronidation in 27 human liver samples, with a CV of 42%. A screen of cDNA expressed UGT isoforms indicated that UGT2B7 (83.94 +/- 0.188 pmols/min/mg), UGT1A9 (51.36 +/- 0.72 pmoles/min/mg), and UGT2B15 (8.18 +/- 0.037 pmoles/min/mg) were responsible for 1'-HEG formation. Glucuronidation of 1'-HE was not detected in cells expressing UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, and UGT1A10. 1'-HE glucuronidation in 27 individual human liver samples significantly (p < 0.05) correlated with the glucuronidation of other UGT2B7 substrates (morphine and ibuprofen). These results imply that concomitant chronic intake of therapeutic drugs and dietary components that are UGT2B7 and/or UGT1A9 substrates may interfere with estragole metabolism. Our results also have toxicogenetic significance, as UGT2B7 is polymorphic and could potentially result in genetic differences in glucuronidation of 1'-HE and, hence, toxicity of estragole.


Asunto(s)
Anisoles/farmacocinética , Carcinógenos/farmacocinética , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Analgésicos Opioides/farmacocinética , Antiinflamatorios no Esteroideos/farmacocinética , Glucurónidos/metabolismo , Humanos , Ibuprofeno/farmacocinética , Técnicas In Vitro , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Microsomas Hepáticos/metabolismo , Morfina/farmacocinética , Nitrofenoles/farmacocinética
20.
Pharm Res ; 19(5): 588-94, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12069159

RESUMEN

PURPOSE: To assess the contribution of drug metabolism to the variability on flavopiridol glucuronidation observed in cancer patients, and to determine the ability of all known human UDP-glucuronosyltransferase (UGT) isoforms to glucuronidate flavopiridol. METHODS: Inter-individual variation in flavopiridol glucuronidation was determined by HPLC using hepatic microsomes from 62 normal liver donors. Identification of enzymes capable of glucuronidating flavopiridol was determined by LC/MS using human embryonic kidney 293 (HEK293) cells stably expressing all sixteen known human UGTs. RESULTS: The major product of the flavopiridol glucuronidation reaction in human liver microsomes was FLAVO-7-G. High variability (coefficient of variation = 49%) was observed in the glucuronidation of flavopiridol by human liver microsomes. In vitro formation of FLAVO-7-G and FLAVO-5-G was mainly catalyzed by UGT1A9 and UGT1A4, respectively. Similar catalytic efficiencies (Vmax/Km) were observed for human liver microsomes (1.6 microl/min/mg) and UGT1A9 (1.5 microl/min/mg). CONCLUSIONS: UGT1A9 is the major UGT involved in the hepatic glucuronidation of flavopiridol in humans. The data suggests that hepatic glucuronidation may be a major determinant of the variable systemic glucuronidation of flavopiridol in cancer patients. The large variability in flavopiridol glucuronidation may be due to differences in liver metabolism among individuals, as a result of genetic differences in UGT1A9.


Asunto(s)
Antineoplásicos/metabolismo , Flavonoides/metabolismo , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Piperidinas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glucuronatos/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/genética , Humanos , Técnicas In Vitro , Isoenzimas/genética , Isoenzimas/metabolismo , Microsomas Hepáticos/enzimología , Propofol/metabolismo , Proteínas Recombinantes/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...